
최원민 | 포트폴리오

About Me.

기술의 'Why'를 탐구하고 구현하는 풀스택 개발자 최원민입니다.
안녕하세요, 저는 명세서대로 구현하는 데 그치지 않고,

사용자의 경험에서 출발해 문제의 ‘Why’를 정의하고, 그에 맞는 최적의 기술로 ‘How’를 설계해왔습니다.

min5024@naver.com / 010-4232-5024

Tools & Skills. 주력 언어:

Frontend

JavaScript

Vanilla JS 서비스 최적화 경험
Pub-Sub 기반 단방향 아키텍처

React TypeScript

기획 UI 구현 경험
atomic design 컴포넌트 개발

Vue.js

학습, 실습 경험

Backend

FastAPI

AI 서버 개발 및 API 구성 경험

Django DRF

REST API 구현 경험

AI

LangChain, LangGraph

RAG 파이프라인 구현 경험
공식 문서를 활용한 개발 가능

Prompt Engineering

시스템 프롬프트 작성 경험
추가 학습중

DevOps & Tools

Git

PR/커밋 규칙 수립 경험
브랜치 충돌 해결, 복구 경험

Figma

화면 레이아웃 설계 경험
사용자 흐름도 설계 경험

AI IDEs

Copilot/Cursor/MCP

사내 code ai(GAUSS) 활용 경험

Education.

삼성청년SW·AI
아카데미 13기
Web Full-stack &

SW·AI 교육

2025.01 - 2025.12

13기 우수 수료

삼성전자 네트워크사업부

연계 프로젝트 진행

다수의 프로젝트 팀장 경험 (3회)

알고리즘 역량 및 구현 역량 함양

명지대학교
아랍지역학과,

인문ICT콘텐츠 융합전공

2019.03 - 2025.02

학부 프로젝트 팀장 경험 (10회)

융합 캡스톤 디자인 A+

데이터 분석/시각화 역량 (18학점 A+)

Awards.

프로젝트 우수상
삼성전자 주식회사

2025.10.02

삼성전자 네트워크사업부 연계 실습 프로젝트

(1100명 중 상위 3% 우수자 선발)

연간 1,600시간 업무 효율화 창출

최종 임원 성과 발표회에서 우수상(3등) 수상

성적 우수상
삼성전자 주식회사

2025.05.30

삼성청년 SW/AI 아카데미

800시간+ 몰입형 SW 교육
학습과정 우수 수료

알고리즘 역량, 프로그래밍 역량,

AI 역량 함양

Language. Algorithm.

OPIc AL

ACTFL

2025.05

백준 Platinum 1

solved.ac / 상위 1%

2025

삼성SW역량평가 A+ (모의)

삼성전자

2025

[Github] https://github.com/almeng-E [Blog] https://velog.io/@cj98123 [BOJ] https://solved.ac/profile/cj98123

최원민 | 포트폴리오 1

https://github.com/almeng-E
https://velog.io/@cj98123/posts
https://solved.ac/profile/cj98123

Projects.

1. 삼성전자 네트워크사업부 연계 프로젝트: Web 기반 PCB CAD 협업 플랫폼
2025.08 ~ 2025.11

🏆 "400명의 VoC 분석으로 연간 1,600시간을 절감하고, 렌더링 성능을 98% 개선한 웹 CAD 솔루션"

Role

팀장, FE Architect

(기여도 40% - 프론트엔드 코어 로직 및 아키텍처 설계)

Tech Stack

VanillaJS Konva.js

Keywords

캔버스 렌더링 최적화, 공간 분할

알고리즘, VoC 기반 기획, Agile

S (Situation: 문제 상황)

비즈니스 배경
삼성전자 네트워크사업부 내 PCB 설계 과정에서 여러 툴(Visio, Excel 등)이 파편화되어 있어,

데이터 불일치 및 중복 설계 작업으로 인한 비효율이 발생하고 있었습니다.

기술적 문제
웹 브라우저 환경에서 2,000개 이상의 부품(Node)을 캔버스에 렌더링하고 조작해야 했습니다.

초기 베타 버전에서는 부품 다중 선택 및 드래그 시 780ms 이상의 렌더링 지연(Lag)이 발생하여 실사용이 불가능한 수준이었습니다.

제약 사항
서버 DB 스키마 수정 없이 프론트엔드 단에서 'Ctrl+G 임시 그룹화' 기능과 같은 편의 기능들을 구현해야 했으며,

6주라는 한정된 기간 내에 실무에 적용 가능한 수준의 최적화가 필요했습니다.

삼성전자 임원 발표회

CAD 메인 화면 (보안으로 일부 블러처리 됨)

우수상(3등) 수상

CAD 배치 예시 및 편의 기능

최원민 | 포트폴리오 2

T (Task: 역할 및 과제)

기획: 현업 실무자들의 요구사항(VoC)을 수집하여 '중복 설계 제로'를 목표로 초기 명세서 너머의 통합 협업 툴 기획

개발: 대량의 객체가 있는 캔버스 환경에서 끊김 없는(60fps) 사용자 경험을 제공하기 위해

1. 캔버스 기능의 렌더링 성능 최적화

2. VanillaJS 기반 커스텀 이벤트 아키텍처 설계

A (Action: 해결 과정 및 기술적 의사결정)

1. 기획 및 소통: VoC 기반 의사결정

VoC 수집

1. 매 주 각 팀의 정기 회의에 참여하여, 시연을 통해 개발 상황 공유 및 파트장(부장)급 임원의 VoC 수집

2. 베타 오픈 후, 400여 명의 실무자 대상의 공청회를 통해 시연과 VoC 수집

의사결정

요구사항을 ICE Score(Impact, Confidence, Ease) 기준으로 우선순위화하고,

최대 임팩트 기능을 먼저 스프린트에 반영한 주간 정기 배포로 개발을 진행

2. 성능 최적화: Uniform Grid 공간 분할 알고리즘 도입

문제 분석

클릭, 드래그시 Konva.js 구현체의 나이브 AABB 전체 순회 방식으로는 2,000개 객체의 충돌 감지 및 렌더링을 감당할 수 없음을 확인

기술 검토

1. Quad-Tree: 검색 효율은 좋으나, CAD 특성상 부품 이동이 빈번하여 트리 재구성(Re-balancing) 비용이 과다하다고 판단하여 배제

2. Dynamic BVH Tree : 게임 업계에서 AABB의 최적화로 주로 채택되지만, 장기 운영 관점에서 복잡도가 크기에 오버엔지니어링이 우려되어 배제

해결책: Uniform Grid

도메인 특성상 부품 크기가 균일하고 맵 크기가 고정적이라는 점에 착안, 캔버스를 x 격자로 나누는 공간 해싱(Spatial Hashing)을 구현

Point Query (클릭) : → ,

Range Query (드래그) : →

 : 선택된 버킷 수, : 선택된 부품 수

보통

3. 아키텍처: VanillaJS 기반 이벤트 설계

문제 분석

캔버스(Konva)뿐 아니라 Table/패널/단축키 등 페이지 기능이 확장되면서 이벤트가 여러 뷰에 흩어져 상태 변경 경로가 복잡해졌고,

그에 따라 데이터 정합성/유지보수 리스크가 증가

기술 검토

각 뷰가 서로 직접 참조하며 통신하면 결합도가 급증하므로, 중앙 이벤트 허브 + 단방향 데이터 흐름이 필요하다고 판단

해결책: EventEmitter + Singleton EventBus

전역 Singleton으로 EventBus(EventEmitter) 를 두고, 모든 상호작용을 emit과 on으로 통일

EventBus를 통해 중앙 상태 모델(SSoT)을 갱신, 각 뷰(Canvas, Table 등)는 이벤트를 구독해 상태 변화만 반영하도록 구성

결과적으로 단방향 통신으로 결합도를 낮추고, 정합성과 유지보수성을 개선

O(N)

10 10

O(N) Amortized O(1) worstcase O(N)

O(N) O(k + M)

k M

k + M << N

최원민 | 포트폴리오 3

R (Result: 성과 및 배운 점)

💰 비즈니스 성과
중복 설계 프로세스를 제거하여 연간 1,600시간의 업무 시간을 절감할 수 있는 기반을 마련했습니다.

📈 성능 개선
500개 부품 기준 렌더링 지연 시간을 780ms → 12ms로 98% 단축하여 쾌적한 UX를 제공했습니다.

🏅 조직 성과
프로젝트의 완성도를 인정받아 계약 기간이 6주 연장되었으며, 삼성전자 주식회사로부터 프로젝트 우수상을 수상했습니다.

✨ 배운 점

VoC는 ‘많이 듣기’가 아니라 ‘우선순위화’가 핵심이다

ICE로 결정 기준을 명문화해 이해관계자 합의를 빠르게 만들고, 주간 배포로 개발 속도를 올림.

성능 최적화는 ‘측정 → 병목 규명 → 가설 검증’ 루프로 접근해야 한다

렌더링 지연 원인을 AABB 전체 순회로 특정하고, 공간 해싱 도입으로 복잡도를 구조적으로 낮춤.

도메인 제약(CAD 특성)이 자료구조 선택을 결정한다

부품 이동이 잦아 Quad-tree의 재구성 비용이 커지고, Dynamic BVH는 운영 복잡도가 높아 배제.

“가장 빠른 알고리즘”보다 “우리 문제에서 가장 지속 가능한 선택”이 중요함.

상각 시간(amortized)과 최악 시간(worst-case)을 함께 설명해야 신뢰가 생긴다

클릭/드래그 시나리오별로 기대 성능과 최악 케이스를 분리해 커뮤니케이션.

클라이언트 상호작용이 복잡해질수록 상태 정합성이 핵심 과제가 된다

대량 객체 캔버스(Konva) 환경에서 선택/드래그/그룹 기능이 늘어나며 상태 불일치와 사이드 이펙트가 쉽게 발생함을 체감.

제약이 있는 VanillaJS 환경에서 Pub-Sub 기반 이벤트 버스를 설계·구현해 이벤트 흐름을 일원화했고,

View 컴포넌트 결합도를 낮춰 유지보수성을 개선, 확장성을 고려함.

코드 보조 도구를 써도 ‘코드 주권’과 책임은 개발자에게 있다 (GAUSS 기반 바이브코딩)

GAUSS로 구현 속도를 높였지만, 최종 코드는 내가 설계 의도·예외·성능 특성을 설명 가능한 수준으로 정제해야 했음.

생성 코드를 그대로 쓰기 보다 테스트·리팩터링·문서화로 내가 소유하고 유지보수 가능한 코드로 만드는 습관을 얻음.

최원민 | 포트폴리오 4

Projects.

2. AI 인터랙티브 그림책 플랫폼: PicTale
 2025.07 ~ 2025.08

📚 "유아 인지 특성을 고려한 UX 설계와 AI 파이프라인 최적화로, '글을 몰라도 작가가 되는' 경험 제공"

Role

팀장, 기획, FE, AI

(기여도 50% - UX/UI 총괄, AI 파이프라인 최적화)

Tech Stack

React TypeScript LangChain

Atomic Design

Keywords

UX 개선, 시장 분석, RAG Pipeline,

Vibe Coding

우수 프로젝트 선정 및 아시아창업엑스포(FLY ASIA) 2025, BEXCO 포스터 전시

Figma 사용 유아용 레이아웃 기획

유아 친화적인 컬러로 화면 구성

블록 선택 + 드로잉 중심 UI/UX

클릭으로 생성하는 그림책 유저의 그림을 기반으로 완성된 그림책

최원민 | 포트폴리오 5

S (Situation: 문제 상황)

팀 방향성 혼란
초기 서비스 정체성이 교육 앱 vs 놀이 앱 vs 단순 생성 앱 사이에서 흔들리며, 핵심 가치와 구현 우선순위가 불명확했습니다.

시장 분석
기존 AI 동화 서비스들은 텍스트 입력 중심이거나 성인 UI를 그대로 사용해, 실사용자인 3~6세 유아가 주체적으로 사용하기 어려웠습니다.

기술적 문제
삽화의 캐릭터/스타일 연속성을 확보하는 데에 문제가 있었습니다.

Img2Img와 Text2Img 방식의 속도·비용·연속성 트레이드오프 문제가 있었습니다.

T (Task: 역할 및 과제)

기획: 경쟁사/시장 조사 기반으로 차별점과 컨셉(니치)을 정의하고 팀 목표를 정려

FE: UX 설계, 텍스트 입력 없는(Non-typing) 인터페이스와 유아의 신체/인지 특성을 반영한 UI 설계 및 구현

AI : 삽화 연속성을 유지하면서 지연/비용을 낮추는 효율적인 생성 파이프라인 설계, 캡셔닝 메타데이터 레이어 추가

A (Action: 해결 과정 및 기술적 의사결정)

1. 기획 및 소통: 시장조사 기반 아이디어/방향성 수립

시장 조사

국내외 유사 서비스(ex. Gemini Storybook, StoryWizard, Bedtime Stories 등)를 설치·분석

아이디어/방향성 수립

“텍스트 시작 + 성인 UI”가 시장의 공통 한계임을 정리

놀이 + 드로잉 + 공유 라는 키워드로 서비스 컨셉 제안

확정된 컨셉을 구현 과제로 분해해 (Non-typing UX / 연속성 / 속도) 개발 우선순위를 명확화

2. FE: 논문 기반 UX 설계 + Vibe Coding으로 개발 효율화

UX 설계

1. Fitts's Law와 아동 터치 인터랙션 연구(Anthony et al.)을 근거로, 유아의 조작 정확도를 높이기 위해

버튼/핵심 인터랙션 요소를 성인 권장 규격(48px)의 2배인 96px으로 설계

2. 유아용 UI는 기성 컴포넌트 라이브러리로 일관되게 맞추기 어려워 Atomic Design으로 버튼/모달 등 기초 컴포넌트 직접 구성

바이브 코딩

Figma MCP와 GitHub Copilot을 활용한 Vibe Coding을 도입해 반복 구현 시간을 단축 (약 50%, PR 리드타임 기준)

확보된 시간을 UX 디테일(애니메이션/피드백) 개선에 재투자

3. AI 파이프라인 최적화: 메타데이터 캡셔닝 레이어로 연속성 확보 + 비용/속도 최적화

문제 분석

Img2Img는 연속성에 유리하지만 지연이 커서 유아 UX에 부적합
반대로 Text2Img는 빠르지만 연속성이 불분명

기술 검토

Imagen3 모델 기준, 두 방법의 토큰 비용 동일

1. 직렬 생성/Img2Img : 페이지를 1→2→3… 순서로 생성하면 컨텍스트 전달이 쉬우나 총 지연이 커짐

2. 병렬 생성/Text2Img : 묶음(1~4, 5~8)으로 생성하면 속도에 유리하나, 캐릭터/스타일 연속성이 깨질 수 있음

해결책: 캡셔닝 레이어 추가, 파이프라인 재설계 (생성 단계가 아닌, 드로잉 단계에서 전처리 레이어 추가)

사용자 그림의 캐릭터 특징/스타일/핵심 요소(색, 표정)를 캡션 메타데이터로 추출해 추후 생성 단계에서 컨텍스트로 주입

Text2Img, 병렬 비동기 호출로 전환하여 생성 속도 ~75% 단축

병렬 생성에 동일한 메타데이터 컨텍스트를 공유해 연속성 저하를 완화

최원민 | 포트폴리오 6

R (Result: 성과 및 배운 점)

✅ 차별된 서비스 기획
유사 AI 그림책 서비스 3개를 분석해 텍스트 시작·성인 UI의 한계를 정의하고, 유아 중심 Text-free 그림책으로 차별화 기획을 수립했습니다.

📈 성능 개선
Img2Img 중심 파이프라인을 캡셔닝 + Text2Img 기반으로 재설계해, 10페이지 생성 기준 대기시간을 약 75% 단축했습니다.

🏅 조직 성과
프로젝트 가치를 인정받아 BEXCO ‘아시아창업엑스포 2025’ SSAFY관에 전시되었습니다.

✨ 배운 점

방향을 잃은 팀은 ‘의견’이 아니라 ‘근거’로 이끌어야 한다

시장/경쟁사 분석을 매트릭스로 정리해 “교육이 아닌 놀이, 텍스트가 아닌 드로잉”으로 컨셉을 확정,

이를 구현 과제(Non-typing UX·연속성·속도)로 분해해 팀 목표를 정렬함.

좋은 제품은 혼자 만드는 게 아니라, 피드백 루프에서 완성된다

컨설턴트·팀원·외부 팀 피드백을 반복적으로 반영하며 UX/플로우를 개선,

“공유 가능한 산출물(시연/정리/우선순위)”이 개발 속도를 높인다는 걸 체감.

프론트엔드 개발에서 TypeScript는 ‘생산성’이 아니라 ‘품질/디버깅 비용’의 문제다

타입이 인터페이스 역할을 하면서 런타임 버그와 디버깅 시간을 줄였고, 협업 시 변경 영향 범위를 예측하기 용이.

멀티스택 협업에서는 ‘경계(Contract)’를 분리하는 설계가 핵심이다

Java 메인 서버가 비대해지는 문제를 경험하며, AI 처리는 FastAPI 같은 별도 서비스로 분리해

책임을 나누는 이유(배포/스케일/개발 속도)를 이해.

AI 적용은 쉽지만, ‘성능·비용·품질’ 트레이드오프를 설계하는 건 어렵다

Img2Img의 비용/지연과 연속성 요구 사이에서, 캡셔닝 메타데이터 기반 파이프라인과 같은

균형점을 찾는 과정이 ‘AI 제품화’의 핵심임을 이해.

팀장 역할은 개발뿐 아니라 ‘일정/갈등 관리’까지 포함한다

기여가 적은 팀원으로 일정이 흔들렸을 때, 개인 비난이 아니라

팀 목표·약속·할 일을 재합의해 실행력을 회복시키는 것이 리더의 역할임을 체감.

최원민 | 포트폴리오 7

Projects.

3. DP 알고리즘 스터디 주최 경험
 2025.03 ~ 2025.04

💻 "공유를 통한 학습 실천"

S (Situation: 문제 상황)

스터디 주최 배경
코딩테스트 핵심 유형인 DP는 진입장벽이 높았고, SSAFY 정규 과정에서 충분히 다뤄지지 않아 동료들 사이에서 학습 포기가 발생했습니다.

개인적 어려움
저 역시 DP의 핵심인 상태 정의·점화식 설계·Top-down/Bottom-up 선택이 익숙하지 않아,

시행착오를 줄일 체계적인 학습 구조와 피드백 루프가 필요했습니다.

스터디 진행 중 문제
난이도가 올라갈수록 이탈이 발생하며 주차별 문제 풀이 참여율이 저하되었습니다.

T (Task: 역할 및 과제)

기획 (커리큘럼): 주차별 유형 로드맵 설계 및 문제 큐레이션

운영 (스터디장): 참여율 유지/개선, 학습 문화 정착, 팀원 동기부여

피드백 루프: 코드 리뷰 + 상호 코드 피드백 구조 설계 및 운영

백준 AC Platinum 1

300일 연속 문제 풀이

주차별 DP 문제 풀이

최원민 | 포트폴리오 8

A (Action: 해결 과정 및 기술적 의사결정)

1. 기획: AI 활용 커리큘럼 설계

Perplexity/ChatGPT를 활용해 DP 학습 경로를 설계하고, 난이도 곡선을 고려해 주차별로 문제를 큐레이션

1차원 DP → 2차원 DP → 동전 → 배낭 → TSP 순으로 단계적 커리큘럼 구성

2. 스터디 운영: 운영 방식 고도화

초기(토론 중심): 각자 풀이 공유·토론 방식으로 운영

전환(강의 + Q&A): 난이도 상승으로 이탈이 발생→ 매주 대표 문제를 미리 풀고 다음 내용을 중심으로 정리해 강의형태로 운영 전환

상태 정의를 DAG 관점으로 정리

Top-down vs Bottom-up 선택 기준 제시

자주 틀리는 포인트(초기값/전이/중복 계산) 체크리스트화

3. 공유 시스템 구축: Notion + 코드리뷰 문화 정착

Notion에 주차별 문제/풀이/핵심 패턴(상태·전이·복잡도)을 정리해 복습 가능한 지식베이스 정리

오프라인 코드리뷰 피드백 루프를 통해 동료들과 코드 리뷰 문화 확보

R (Result: 성과 및 배운 점)

👥 스터디 성과
스터디 인원이 4명 → 9명으로 증가했고, 주차별 문제 풀이 참여율을 30% → 80%로 개선했습니다.

📈 개인적 성장
DP 문제 접근이 체계화되었고, 공유+소통 기반 학습 태도를 유지하며 최근에는 블로그 정리로 이를 이어가고 있습니다.

✨ 배운 점

공유를 통한 성장은 빠르고 강력하다.

코드 리뷰와 토론을 통해 서로의 사고 과정 비교
혼자 학습 할 때보다 훨씬 빠르게 성장함을 체감.

DP의 핵심은 ‘상태 정의’다.

점화식보다 먼저, 문제의 ‘상태’를 정의하는 것이 우선
Top-down/Bottom-up은 DAG 상태 정의 이후의 일

팀원 독려는 ‘의지’가 아니라 ‘운영 설계’로 해결된다.

참여율 저하는 개인 의지 문제가 아니라,

난이도 곡선·준비 부담·피드백 구조 같은 운영 구조의 문제일 수 있음을 이해.

알고리즘 PS는 추상화된 훈련도구다.

문제를 구조화하고, 가설을 세우고, 검증하는 과정에서 엔지니어링의 본질적인 매력을 느낌.

- 끝 -

최원민 | 포트폴리오 9

